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ABSTRACT
The transient analysis of hydrodyramic lubricaticn of a point-contact is
presented. A body-fitted coordinate system is introduced to transform the
physical domain to a rectangular computational domain, enabling the use of the
Newton-Raphson method for determining pressures and locating the cavitation
boundary, where the Reynolds boundary condition is specified. In order to
obtain the transient solution, an explicit Euler method is used to effect a
time march. The transient dynamic load is a sinusoidal function of time with
frequency, fractional loading, and mean load as parameters.
Results include the variation of the minimum film thickness and phase-lag

with time as functions of excitation frequency. The results are compared with
the analytic solution to the transient step bearing problem with the same

dynamic loading function. The similarities of the results suggest an

approximate model of the point contact minimum film thickness solution.

*NASA Resident Research Associate at Lewis Research Center.




INTRODUCTION

Nonconformal contact machine elements in power train systems such as
gears, rolling element bearings, and cam and follower mechanisms are subject
to transient lubrication. The transient characteristics are due to the time
variation of loading, geometry, and the rolling or sliding speed in the line
or point contact. These variations result in a squeeze effect which affects
the minimum film thickness distribution. An example of this is the ball
bearings in a rotordynamic system in which there exist cyclic variations of
the dynamic load. Recently, the transient hydrodynamic and elastohydrodynamic
line contact problem has received much attention (Refs. 1 to 3). Among the
several authors, Vichard (Ref. 1) pioneered the basic transient
characteristics of the line contact problem analytically and experimentally
including the viscous damping phenomenon. In this paper, the transient
solution of the hydrodynamically lubricated point contact presented.

In solving the point contact transient problem numerically, a fast
computer code is needed to solve the two dimensional Reynolds equation for
many time steps. Numerical methods for solving the simultaneous equations
resulting from the ¢ scretization of the Reynolds equation are usuaily
performed using either iterative methods or semidirect methods (Ref. 4). The
former commonly involves the Gauss-Seidel method, the latter combines the
Newton-Raphson method with a direct inversion of the Jacobian matrix. An
important difference between the iterative method and the semidirect method is
that the initial guess plays an important role in the latter, whereas the
former is relatively insensitive to the initial guess. With the semidirect
method, the use of a previous solution as an initial gquess accelerates the
solution process, but a good initial guess usually does not help the iterative
method significantly (Ref. 4). The semidirect method is preferred for
transient problem since the solution of the previous time step accelerates the
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next step solution. Furthermore, the Newton-Raphson method has a quadratic
convergence rate, so, in general, the solution can be terminated within ten
iterations. When a parallel processing computer using vectorization is
employed the matrix inversion is very fast. In addition, there is no need to
use underrelaxation factors, and the solution can be obtained more rigorously
than is typical with iterative methods. The matrix inversion can be done by
the Thomas algorithm, and there is no need to store the whole Jacobian matrix.
When the semidirect method is used in the point contact problem, the
cavitation boundary, where the Reynolds boundary condition (B.C.) 1s specified,
is difficult to locate. There is a fundamental difference between the line
contact and the point contact problem. In the line contact case, the Reynolds
equation is integrated once; the Neumann condition is introduced; and the
integration constant is found as a part of the solution. 1In the
two-dimensional problem, the Reynolds equation can not be integrated. Since
the Reynolds B.C. insures mass conservation across the boundary, the
cavitation boundary should be located as accurately as possible. However, the
location is not known in advance; it is a part of the solution. It is a free
boundary where two B.C.'s are present: Dirichlet B.C. (pressure is zero), and
Neumann B.C. (normal pressure gradient is zero). The relaxation method of
Christopherson (Ref. 5), deriv u tor the hydrodynamic lubrication of a journal
bearing, has been used to solve th:s kind of free boundary value problem.
This method truncates negative computed pressures whenever they occur during
iteration. However, this method can not be used in the semidirect method. In
this work a body-fitted coordinate system is introduced which transforms the
unknown boundary into a fixed boundary and the unknown boundary function is
introduced into the equations of motion. The smooth cavitation boundary is
found up to truncation and machine errors, whereas the result for
Christopherson's method is dependent upon the mesh size near the boundary. To
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detect the minute change of the cavitation boundary between the adjacent time

steps, the current method is desirable. Another advantage of this method is

that a nonzero pressure gradient condition can be implemented for very lightly

loaded cases where surface tension may play an important role, or for

non-Newtonian, viscoelastic fluids.

In the present paper the transient hydrodynamic lubrication of a step

bearing is solved analytically to provide physical insight into the transient

characteristics of hydrodynamic lubrication. Next, the point contact problem

is

solved numerically by the Newton-Raphson method with Thomas algorithm.

This method is fast and does not require vast computer storage. Parallel

processing by vectorization is also utilized.

The variation with time over a loading cycle of the minimum film

thickness, squeeze velocity, and the cavitation boundary is studied for a wide

range of excitation frequencies.

NOMENCLATURE
dimensionless load

dimenslonless mean load

right hand side equation of discretized equation
load, N (point contact), N/m (step bearing)

mean load, N (point contact), N/m (step bearing)
dimensionless cavitation boundary function

first derivative of G with respect to Y
second derivative of G with respect to Y
cavitation boundary curve function

dimensionless film thickness

dimensionless minimum film thickness

normalized dimensionless minimum film thickness, Hgo/Hop
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dimensionless minimum film thickness for Fy
film thickness, m

minimum film thickness, m

number of iteration of Newton-Raphson method
length of the step bearing, m

reference length for order-of-magnitude analysis, m
number of grid in § direction

number of grid in n direction

normal direction vector

dimensionless pressure

pressure, N/mé

radius of sphere, m

residual vector of discretized equation

time, sec

solution vector of the discretized equations

average surface velocity in x-direction, m/sec

reference velocity for order-of-magnitude-analysis, m/sec
dimensionless coordinate along rolling direction
dimensionless inlet boundary location in X-direction
coordinate along rolling direction

inlet boundary location in x-direction

dimensionless coordinate transverse to rolling direction
dimensionless inlet boundary location in Y-direction
coordinate transverse to rolling direction

inlet boundary location in y-direction
viscosity-pressure coefficient, m/N

dimensionless viscosity-pressure coefficient
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bearing used here is subjected to an oscillating normal motion and is closed
at the exit end.

available in the literature and is therefore presented here.

Consider the simple step bearing shown in Fig. 1.

fractional loading amplitude for sinusoidal loading
dimensionless frequency

dimensionless film thickness of the step bearing
normalized film thickness of step bearing, &§/8qgp
dimensionless film thickness of the step bearing for mean load
lubricant viscosity, Pa-sec

dimensionless lubricant viscosity

lubricant viscosity at atmospheric pressure, Pa-sec
kinematic viscosity, mé/sec

coordinates of transformed domain

lubricant density, kg/m3

dimensionless time

phase angle of the step bearing solution, deg

phase angle of the point contact solution, deg
physical domain

computational domain

frequency of sinusoidal! loading, 7zycle)/sec

ANALYTICAL SOLUTION OF A STEP BEARING

and the dynamic force are:

hix,t) = h(t), 0 <X <L,
= 0, x =L,
f(t) = fo(l + B sin wt).

Note that the step

To the authors' knowledge, this particular solution is not

The film profile

()
(2)




For an incompressible, isoviscous, Newtonian fluid, the governing
equation is,

Uy

3_ h3 3p) ah ah . _ 1 (3
ax \1° ax/) = 12MoUpn 3x * 12Hg 3¢ Up= 72
The boundary conditions and the initial condition are,
p::o at X=-‘O,
h=0 at x =1L, 4
h=hy when t=0.
With the following definitions,
tu
h m X pL f wl
8:—, ‘tz_; X=—’ P= , F=——, Y = ——,
L L L HoUm HoYnm Un
the dimensionless equations are,
3_ (3 3Py _ 4, 38 a8
(3% -5 28
8§(X,t) = 8(x), 0 < X «1,
=0, X=1, (5
P=0 at X =0,
§ = §j when <t =0,
F(t) = Fo(l + B sin y1). (6
After integrating Eq. (5) three times using,
1
I P dX = F(x) )
0
the following nonlinear first order differential equation results:
2 38§ 3 ]
= a—- S5=- 5F(0). (8)
83 at 82 2
The solution of Eq. (8) subject to the B.C.'s in Eq. (5) is,
-1/2
F Fo By N F F.B
§(1) = [(li - 39 + ———-cz-)—————)e-3t + Eg + ———g————— (3 sin yr - y cos yt)
8 2(y" + 9 2(yv" + 9
i
(9)

After a sufficiently long time (t + =), the exponential term vanishes to zero,
and the time variation of the film thickness becomes,

7
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-1/2

§(1) = ——— sin(yt - ) ,

TV
nere ‘/_ - tan”'(%). (10)

The formula for the squeeze velocity is obtained by differentiating

Eq. (10),
-3/2

(“)
dx ( ) cos(yt - ¢S) 1 + S  E— sin(yt - ¢S) . an
Y 1_2
‘*() e (%)
ANALYTICAL FORMULATION OF THE POINT CONTACT PROBLEM
The physical model is illustrated in Fig. 2. The radius of the sphere is
R and the dynamic force is the same as that of the step bearing. The two
dimensional, transient, incompressible form of the Reynolds equation for

Newtonian flow is,

3
a_(h’3p 1oy 3h, , 8h
X \u ax> 3y (p oy, !Zum ax * 12 at

where
p = pix,y,t) 12)
h = hix,y,t)
= pi(x,y,t).
The parabolic approximation of the film thickness equation of the sphere
1s:
2. 2
h = h0 2R X"+ y5). a»

At a given time, the generated pressure distribution is balanced by the

dynamic load,

f(t) = J J P(x,y,t)dx dy. (14
Q




The piezoviscous effect is modelled by the Barus relation (16):

o= poe“p. (15)

The boundary conditions are:

p=0 at «x = Xp 0 <y« g

p=0 at x, <x<glygt) y =Yg

ae)
p = 0; QE =0 at x = gly,t) 0 <y« Yg
an
3p _ -
dy = 0 at XA < x < go0,t) y = 0.

At the cavitation boundary, x = g(y,t), the pressure and the normal
pressure gradient are zero (Reynolds B.C.). Using symmetry at y = 0, the
Neumann B.C. is imposed and only half of the domain is modelled.

With the following definitions,

X, Y. h. PR . f
x= N Y= N H=", P= ’ F= ’
R R R HoMm pOUmR
u_t
m-, R. - M. g
T="R Y= po= G =
R Un Mo R
the dimensionless equations are:
L(ﬂfa_P)+§_(H_33_P_)=12§ﬂ”2§ﬂ
ax H aX ay no 9y 9 at’
HoeHy+ g O+ YD),
YB GCY)
F(x) = 2 J J PIX,Y,x)dX dY, an

F(x) = F0(1 + B sin y 1),

with & = 1.5131X1078 in this study.




To fix the unknown cavitation boundary, the following body-fitted

coordinate transformation shown in Fig. 3 is introduced:

. YB(X - XA)
G(Y,t) - XA
n=7Y, (18

9] = GO, - X /Y.

|J] is the Jacobian of the coordinate transformation which shows that as

long as G(Y,t) is not equal to Xp, there exists a conformal mapping between

the physical domain and the computational domain.

The differentiations transforms to the following:

a "8 3
X = G- X, 3
a _93 _ _EG' 3
37 " an " G- X, 36
2
L W G
x* (G- X 8’
|2 11
B2 & e S g[2<c 2 G (G—XA)] 3 o
v’ (G - xA>2 gg2 G- Xy 883 " 42 G - X% 3
The Reynolds equation in the (E,n) system is,
- )
APEE + BPEn + CPnn + DPE + EPn + F=0, (20

where
2 2,2
A = A3[YB + £2(6 )],
B = A3[-266" (G-X)1,

2
C = Ay(G - X2,
D = A Yo(G = X,) - ALEG'(G - X,) + A g[z<c'>2 S GG - X >]
1'8 Al - Ay Al t Ay 'Y
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2
E = AZ(G - XA) .
F A (G - XA) ,
AL TR W
17 - X X k- '
H u
oo 33 (1
2T -t ay \ - J°
M H
Lo
3__’
M
H o, oH
A4 = 12 ax * 12 3c"

In the above formulation, Ay, Ay, A3, and A4 can be transformed to the

(£,n) coordinate system using Eq. (19). At the cavitation boundary,

= - : [G L g v 5@HHE - a5 = 0. 1)
M 1. el A
Since 3P/dn =0 at & =
aP - 3 -
5 ° 0, P=0 at £ = YB' (22)
At n = 0(Y = 0), the symmetry condition is,
Cla —gL ® _o. (23)

Yy ~ an 3 =

But, G' = 0 due to the symmetry of cavitation boundary and it follows

that,
— =0 at n =0, (24)

The transformed film thickness equation and the force balance equation
are expressed,
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2
£GG - X,)
HCE,n) = Hy + % [-———;7—11- . XA} e nl, (25)
B
Yg Vg (G=X,)
F(e) = 2 J J P(E,n,1) —— dE dn. (26)
0o Yo B

In the above formulation, the unknown boundary curve function G s

introduced into the governing equations while the computational domain is

fixed.
NUMERICAL METHODS

Equation (20) is a nonlinear partial differential equation. The
nonlinearity is due to the piezoviscous relation and to the function G 1in
the transformed Reynolds equation.

Spatial Discretization

In order to minimize the number of grid points while maintaining accuracy,
a smoothly varying nonuniform spacing is generated by a two-sided stretching
function, (hyperbolic tangent) (Ref. 10). The finest spacing is near the
cavitation boundary which is also near the maximum pressure gradient.

Figure 4 shows the finite difference mesh structure. The increments in

£ and n and are such that

&1 - §p_y = A4
§1,1 - b = TghE 2n
Ny T N3op = 4n
Nge1 ~ 9 % rnAn'
By the Taylor series expansion, the finite difference approximations of

derivatives with respect to § and n are,
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2 2
o TTeProy gt e - PPy e Pry g

3¢ re(1 + o8k
2 2
3P _ —r‘nPIlJ_‘ + (rf] - ])PI,J + PI,JH
3n Y‘n(] + ;‘1 )An
QEB _, rgpl—l,J - (rg + ])PI,J + PI+lJJ
ag? re(l + rg)Agz
3% _, rPpgy m (T P e Ppg
anz rn(] + rn)Anz
a%p 1
- 1
d&an rgr‘n( + rg)(] + rn)AEAn
2.2 2,2 2 2,2 2
X rgrnPI_],J_] - rn(rg - ])PI,J_] - rnPI+l,J—1 - rE(rn - ])PI-I,J + (rE -1
2 2 2 2
X (rn - ])PI,J + (rn - ])PI+1,J ~ rgPI-],J+1 + (rg - ])PI,J+] + pI+l,J+] .
(28)

Substituting Eq. (28) into the transformed Reynoids Eq. (20) the following

discretized equations results,

R g =GP a0 * CPrawt * C3Pran ger * CaPron g * CsPra + CePrar g
+C7 + CP + CP +C =0, (29)
1-1,3-1 "8 1,3-1 T 9 1e1,3-1 T 10
with
Py =Py =0  1<IcN,
pI,NJ =0 1 < I ¢ NI,
Lo = P12 1 <1 ¢ NI,
PNIs1.3 = PNI=1. 0 T ¢J N
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Steady-State Solution Method
The transient solution is formed by computing the steady-state solution
for each time step including the squeeze term. The numerical technique for
the steady-state solution along with the Thomas algorithm and Newton-Raphson
method is described first.

The discretized form of transformed equation is,

>

K(HU = F (30)

The vector U represents the unknown values, pressures and cavitation
boundary. For an isoviscous condition K(ﬁ), contains the function G, and,
for a piezoviscous condition, it includes pressures as well. The discretized
simultaneous equations are nonlinear. Even for the linear free boundary value
problem, it has a nonlinear characteristics since the unknown boundary is
associated with the solution.

The Newton-Raphson method is described,

>
1 = O - J"(ﬁk)R<Uk> (N

>
U

> > » > :
where R(uk) = K(uk)uk - F is the residual vector and J(u) is the Jacobian

of the system of equations. 1In practice, the iteration is organized as,

> B 3 > > >
J(uk)Auk = -R(uk), Uk+1 = uk + Auk. (32)
For this study, the vector I is,
3 - (PZ 3Py g o Par J,GJ>T, I = 1N - (33)

in which Py g and Py1 g are zero from the Dirichlet boundary condition.

.’
The residual vector R s,

R - (R R R R )T, J=1, N -1 (34)

2,J' 73,3'7 7 7 UNI-1,3 UNILJ
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The Jacobian matrix is a block tridiagonal matrix in Fig. 5, and each
block is a one-sided arrow-shaped matrix, Fig. 6. In the formulation of each
block matrix of the Jacobian, the last columns are the differentiations of the
residual vector with respect to the cavitation boundary function, G. Since all
the coefficients in the discretized Reynolds equation are composed of Gy, G'y,
and G''3, it is easier to calculate them numerically (Ref. 11) using:

aR

I,J 1
—\’]— = E—g— RI,J(GJ + Cg,wI’J) - RI,J(GJ,WI,J) (35)

where W¥I,J contains all other variables except Gj. The value of
eg Ccan be chosen to be sufficiently small not only to maintain good accuracy
of Eq. (35) but to prevent serious round-off errors. In this calculation,
eg 1s set to 1079 in double precision.

The block tridiagonal system of Eq. (30) is solved by the Thomas
algorithm (Ref. 12). This algorithm inverts the whole matrix at a time by
matrix multiplication and inversion of the block matrix, which is quite fast
on a parallel processing computer with small memory storage size equal to
2 x NI x NJ x NJ. The matrix inversion is accomplished using LINPACK.

The Newton-Raphson method requires a good initial guess of the solution.
For this purpose, the Gauss-Seidel iteration method is used to get an
approximate pressure distribution and cavitation boundary location. Once one
solution is obtained by the Newton-Raphson method, it is used for the guess to

next solution. The convergence criteria are

(1) pressure




(2) cavitation boundary

k+1 k
2l -G'
3 , J J

K
2 &

J

< l.OxlO'4

(3) force balance

.F input ~ Foutput
F

¢ 1.0x107%

input

In order to make sure of the convergence, the Lp-norm of the residual
vector is monitored. In general, the solution converges within 3 to 8
iterations. In this study, NI = 41, NJ = 31,

Transient Solution Method

For the steady-state solution, the problem is to find Hp for a given
12ad, or for a hydrodynamic case, the load capacity can be calculated for a
given Hp. But, for the transient case, there is an additional unknown value
to be determined, the squeeze velocity. The basic solution technique is to
use a "time-march." That is, Hp 1is fixed from the previous time step, and
the squeeze velocity is found that balances the generated pressure distribution
with the dynamic force at that time. The detailed computation procedure is
provided in Fig. 7. At the first time step, the steady-state Reynolds
equation is solved to find Hpp, and, fixing Hp, the transient Reynolds
equation is solved including the squeeze term to find the squeeze velocity
using the force balance equation. For this purpose, a bisection method is
used, with an approximate range of squeeze velocities according to the history
of dynamic force and the minimum film thickness variation. Once a converged
solution is obtained, the minimum film thickness of the next time step is

estimated from the following expression:
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n
n+1 n daH
HO+ = H0 + <5;> At, (n = present time step) (36

The film thickness and squeeze velocities are established at successive
time steps and the calculation is continued beyond the first complete loading

cycle until the periodic requirement is reached. The convergence criterion is:

() - H € .
T < 1.0x107 7, IC = number of cycle
(HO)n

In this calculation, 361 time steps with 1° increment are used in one

loading cycle.
RESULTS AND DISCUSSION

The analytical solution of the step bearing demonstrates that § approaches
one with a phase-lag of 90° as y increases (Fig. 8). This asymptotic
behavior is due to the squeeze action caused by the dynamic forces. Figure 9
shows the squeeze variation of Eq. (11). This phenomenon is physically
similar to a nonlinear massless spring-damper system with forced vibration
shown in Fig. 10, sometimes referred as a "half a degree of freedom system."
The response of this system is that the amplitude approaches a constant value
and the phase-lag goes to 90°. Although the transient solution of the point
contact problem can not be solved analytically and requires numerical
computation, it may be speculated that basically it 21so has a similar
nonlinear spring-damper system. In the following example, the numerical
results of the point contact problem are compared to the step bearing solution.

For this study, Fp = 3000 and B = 0.3 with different y's. The
minimum film thickness for Fg 1is 1.2471x10-3 for the isoviscous case and
1.3907x10-3 for the piezoviscous effect with Xz = 0.08, Yg = 0.06. Figure 11

shows the pressure distribution for Fgp and Fig. 12 delineates the detailed
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cavitation boundary curve in which the minimum value of G occurs at Y =0
and it increases up to a certain location and then decreases because of the
geometry of the sphere.

Figure 13 illustrates the time variation of the normalized minimum film
thickness (Hg) during one loading cycle with 361 time steps. The squeeze
velocity distribution is shown in Fig. 14 for different y's. These results
are qualitatively similar to those of the step bearing solution. However, it
should be noted that the order of the nondimensional excitation frequencies is
different since L is used as a reference length in the step bearing while
R is used for the point contact case.

Equation (10) may be put in the following form,

_ 1/2
§ = 1
1 + aSB sin(yt - ¢S)

where

1 -1 1
a = ¢, = tan” (A y) X = 3- an

: ‘/ e O’
The variation of ag and ¢g are plotted in Fig. 15.
For quantitative analysis of the transient point contact problem, the
following formula is suggested by Eq. (37),
2

- ]
Ho = [1 a8 sTneye - ¢p>] (38

Equation (38) is deduced based on the fact that Hoy 1is inversely
proportional to Fg whereas §,  to ,vﬁaﬂ The unknown values in Eq. (38),

ap and ¢p, are obtained by a nonlinear least square fit with 361 data
point. Figure 16 shows the comparison between the numerical results and the

curve fit. The best curve fit can be obtained by letting the numerator of

18




Eq. (38) be variable, however, it is near 1, for example, 1.005 for y = 100,
1.019 for y = 1000. The curve fitting results are recorded in Table 1.

Fig. 17 shows the variation of ap and ép. qualitatively, similar
characteristics to the analytical step bearing solution with different order
of magnitude of y (Fig.15). The value of X5 1is obtained assuming the

following relation,

-1
- A )
6y = tan” () (39

Ap s nearly constant over a wide range of vy, approximately 0.0054. If an
analytical solution were possible, the aj would be a function of Xp.
However, since it also would be a function of the geometry associated with the
cavitation boundary, no attempt is made to obtain a form similar to Eq. (37).
Instead, for design purposes, Eq. (38) can be used along with Table 1.

For the piezoviscous solution, ap fis smaller than that of the isoviscous
solution (Fig. 17), but ¢p's are virtually the same. The ap's
asymptotically approach those of the isoviscous case. Figure 18 shows this
more vividly. Due to the piezoviscous effect, the distribution of Hp 1is
more damped with the same phase angle. The Ap's for the piezoviscous case
are nearly constant and equal to the isoviscous case (see Table 1). This
implies that Ap is a characteristic of the transient point contact problem
of the current model.

Figure 19 illustrates the location of the outlet boundary at Y =0
normalized by that for the steady-state.solut1on of Fp. For the steady state
case, G(0,t) approaches the point of contact as the load increases. However,
when vy 1is greater than zero there exists a substantial variation in G(O,t)
due to the squeeze action. When the squeeze is downward, G(O,t) may be

stretched outward and vice versa. For example, when y = 200, there is a

19




downward action between a-b and c-d in Fig. 19, and upward action between
b and ¢. These points correspond to those in Fig. 14.

In the foregoing analysis, the Reynolds Eq. (12) neglects the inertia
forces. But, as vy 1increases, the validity of this assumption becomes
suspect. This assumption is examined by an order-of-magnitude-analysis
of the steady-state Navier-Stokes equation in Ref. (12). When the modified

Reynolds number is much less than one,

pUOQ ho 2
— i |l=] « (40)
u Q
the inertia forces can be neglected. Here, ug 1is a reference velocity,
2 is a reference length in the x-direction, and hg 1is that in the film

thickness direction. Using,

. _ Ru
Uy = Ro; vy (41)

the following relation for the validity of the assumption that inertia

forces are negligible is,

h h.u
0 Re = —glﬂ. (42)

For example, if Hg = 10-5, R = 10-2 m, u = 0.1 m/sec, and
v = 1079 m?/sec,

y « 108 (43)

Even for y = 1000, inertia effects remain negligible.

CONCLUSIONS
The transient solution of the hydrodynamically-Tubricated point contact
probiem including the squeeze effect is obtained numerically using the
ball-on-plane model. A new computational algorithm is impiemented to deal
with the cavitation boundary by the semidirect method with the advantage of
20




supercomputing. This method provides a faster and more rigorous way to solve
the nonconformal contact problem with a Newtonian fluid than the conventional
iterative method, and the flexibility to deal with more complex boundary

conditions for lightly loaded bearings and more realistic rheological models.

The qualitative and quantitative analysis is compared with the analytical
solution of a dynamically loaded step bearing solution using a nonlinear curve
fitting method. It is found that there exists a cnaracteristic similarity in
the transient responses to a nonlinear massless (i.e., no inertia)
spring-damper system, in terms of the variation of the minimum film thickness
and phase angle. According to an order of magnitude analysis, it is confirmed
that the inertia-forces are negligible for a wide range of practical
excitation frequencies.

These results can be applied to the design of moderately loaded ball
bearings in rotordynamic systems and can be extended to gear design adding the
time variation of the geometry and speed. For highy loaded elliptical contact
case, the elastic deformations and ellipticity parameter need to be considered.
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TABLE 1 - CURVE FITTING RESULTS OF EQ. (38)

Isoviscous Piezoviscous
Y a | % *p @ | % *p
0| 0.890 0.0 | -—=-=--- 0.734 0.0 | —=—=—==-—-~
25 .882 7.0 | 0.004%1 .128 7.0 | 0.00491
50 .859 14.7 .00523 .709 14.7 .00526
100 .781 28.3 .00538 .646 28.4 .00541
150 .687 39.2 .00544 YA 39.2 .00544
200 .599 47.5 .00545 .499 | 47.4 .00544
250 .523 53.8 .00546 .438 53.7 .00545
300 .461 58.7 .00547 .386 58.5 .00544
350 .409 62.3 .00545 .343 62.3 .00545
400 .368 65.3 .00544 .309 65.2 .00541
500 .303 69.8 .00544 .255 69.8 .00544
750 .210 76.1 .00539 176 | 76,1 .00539
1000 .159 79.4 .00536 .134 79.4 .00536
(1) =fo(1=Bsinwt)
! L 1
I
|

Y

b
A/l

Uy

Figure 1. - Schematic view of the step bearing configuration.
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